Abstract

A differential-algebraic model system which considers a prey–predator system with stage structure for prey and harvest effort on predator is proposed. By using the differential-algebraic system theory and bifurcation theory, dynamic behavior of the proposed model system with and without discrete time delay is investigated. Local stability analysis of the model system without discrete time delay reveals that there is a phenomenon of singularity induced bifurcation due to variation of the economic interest of harvesting, and a state feedback controller is designed to stabilize the proposed model system at the interior equilibrium; Furthermore, local stability of the model system with discrete time delay is studied. It reveals that the discrete time delay has a destabilizing effect in the population dynamics, and a phenomenon of Hopf bifurcation occurs as the discrete time delay increases through a certain threshold. Finally, numerical simulations are carried out to show the consistency with theoretical analysis obtained in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call