Abstract
We present three-dimensional simulations of the dynamical bar-mode instability in magnetized and differentially rotating stars in full general relativity. Our focus is on the effects that magnetic fields have on the dynamics and the onset of the instability. In particular, we perform ideal-magnetohydrodynamics simulations of neutron stars that are known to be either stable or unstable against the purely hydrodynamical instability, but to which a poloidal magnetic field in the range of $10^{14}$--$10^{16}$ G is superimposed initially. As expected, the differential rotation is responsible for the shearing of the poloidal field and the consequent linear growth in time of the toroidal magnetic field. The latter rapidly exceeds in strength the original poloidal one, leading to a magnetic-field amplification in the the stars. Weak initial magnetic fields, i.e. $ \lesssim 10^{15}$ G, have negligible effects on the development of the dynamical bar-mode instability, simply braking the stellar configuration via magnetic-field shearing, and over a timescale for which we derived a simple algebraic expression. On the other hand, strong magnetic fields, i.e. $\gtrsim 10^{16}$ G, can suppress the instability completely, with the precise threshold being dependent also on the amount of rotation. As a result, it is unlikely that very highly magnetized neutron stars can be considered as sources of gravitational waves via the dynamical bar-mode instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.