Abstract

We study dynamical aspects of the plane-wave matrix model at finite temperature. One-loop calculation around general classical vacua is performed using the background field method, and the integration over the gauge field moduli is carried out both analytically and numerically. In addition to the trivial vacuum, which corresponds to a single M5-brane at zero temperature, we consider general static fuzzy-sphere type configurations. They are all 1/2 BPS, and hence degenerate at zero temperature due to supersymmetry. This degeneracy is resolved, however, at finite temperature, and we identify the configuration that gives the smallest free energy at each temperature. The Hagedorn transition in each vacuum is studied by using the eigenvalue density method for the gauge field moduli, and the free energy as well as the Polyakov line is obtained analytically near the critical point. This reveals the existence of fuzzy sphere phases, which may correspond to the plasma-ball phases in N=4 SU(\infty) SYM on S^1 X S^3. We also perform Monte Carlo simulation to integrate over the gauge field moduli. While this confirms the validity of the analytic results near the critical point, it also shows that the trivial vacuum gives the smallest free energy throughout the high temperature regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.