Abstract
In this paper, we consider five mathematical models of corona virus infection. The first model is a mathematical model of corona virus entry. The second model is a mathematical model for interactions of virus N-protein and viral RNA. Here, we prove that phosphorylated N protein increases the affinity of viral RNA. The third model is a mathematical model of virion assembly. It is a six-dimensional model. But there is an invariant three-dimensional submodel, which we can prove has a positive stable equilibrium. The fourth model is a model of an enzyme inhibitor that blocks viral replication. The fifth model is a model of a virus and a vaccine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.