Abstract

In this study, we characterized the structure and the dynamics at a picosecond scale of water molecules in aqueous solutions with cations having various kosmotropic properties (XCl2 where X = Ba2+, Ca2+, and Mg2+) confined in highly ordered mesoporous silica (MCM-41 and grafted MCM-41) by Fourier transform infrared spectroscopy and quasi-elastic neutron scattering. We pinpointed the critical pore size and the electrolyte concentration at which the influence of the ion nature becomes the main factor affecting the water properties. These results suggest that whatever the ions kosmotropic properties, for pore sizes ϕp < 2.6 nm and [XCl2] ≤ 1 M, the water dynamics is mainly slowed down by the size of the confinement. For pore sizes of 6.6 nm, the water dynamics depends on the concentration and kosmotropic properties of the ion more than on the confinement. The water properties within the interfacial layer were also assessed and related to the surface ion excesses obtained by sorption isotherms. We showed that, for pore sizes ϕp ≥ 2.6 nm, the surface ion excess at the pore surface is the main driver affecting the structural properties of water molecules and their dynamics within the interfacial layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.