Abstract

This paper investigates the dynamical multisynchronization (DMS) and static multisynchronization (SMS) problems for a class of delayed coupled multistable memristive neural networks (DCMMNNs) via a novel hybrid controller which includes delayed impulsive control and state feedback control. Based on the state–space partition method and the geometrical properties of the activation function, each subnetwork has multiple locally exponential stable equilibrium states. By employing a new Halanay-type inequality and the impulsive control theory, some new linear matrix inequalities (LMIs)-based sufficient conditions are proposed. It is shown that the delayed impulsive control with suitable impulsive interval and allowable time-varying delay can still guarantee the DMS and SMS of DCMMNNs. Finally, a numerical example is presented to illustrate the effectiveness of the hybrid controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call