Abstract
Dynamical properties of complex networks are related to the spectral properties of the Laplacian matrix that describes the pattern of connectivity of the network. In particular we compute the synchronization time for different typesof networks and different dynamics. We show that the main dependence of the synchronization time is on the smallest nonzero eigenvalue of the Laplacian matrix, in contrast to other proposals in terms of the spectrum of the adjacency matrix. Then, this topological property becomes the most relevant for the dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.