Abstract

In this paper, the fractional-order generalized Lotka–Volterra (GLV) model and its discretization are investigated qualitatively. A sufficient condition for existence and uniqueness of the solution of the proposed system is shown. Analytical conditions of the stability of the system’s three non-negative steady states are proved. The conditions of the existence of Hopf bifurcation in the fractional-order GLV system are discussed. The necessary conditions for this system to remain chaotic are obtained. Based on the stability theory of fractional-order differential systems, a new control scheme is introduced to stabilize the fractional-order GLV system to its steady states. Furthermore, the analytical conditions of stability of the discretized system are also studied. It is shown that the system’s fractional parameter has effect on the stability of the discretized system which shows rich variety of dynamical analysis such as bifurcations, an attractor crisis and chaotic attractors. Numerical simulations are used to support the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.