Abstract

In this paper, a nonlinear fractional emerging telecommunication model with higher–order dispersive cubic–quintic is studied by using two recent computational schemes. This kind of model is arising in many applications such as machine learning and deep learning, cloud computing, data science, dense sensor network, artificial intelligence convergence, integration of Internet of Things, self–service IT for business users, self-powered data centers, and dense sensor networks (DSNs) that is used in the turbine blades monitoring and health monitoring. Two practical algorithms (modified Khater method and sech–tanh functions method) are applied to higher–order dispersive cubic–quintic nonlinear complex fractional Schrödinger (NLCFS) equation. Many novel traveling wave solutions are constructed that do not exist earlier. These solutions are considered as the icon key in the emerging telecommunication field, were they able to explain the physical nature of the waves spread, especially in the dispersive medium. For more illustration, some attractive sketches are also depicted for the interpretation physically of the achieved solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call