Abstract

This study investigates the submesoscale fronts and their dynamic effects on the mean flow due to frontal instabilities in the wind-driven summer offshore jet of the western South China Sea (WSCS), using satellite observations, a 500 m-resolution numerical simulation, and diagnostic analysis. Both satellite measurements and simulation results show that the submesoscale fronts occupying a typical lateral scale of O(∼10) km are characterized with one order of Rossby (Ro) and Richardson (Ri) numbers in the WSCS. This result implies that both geostrophic and ageostrophic motions feature in these submesoscale fronts. The diagnostic results indicate that a net cross-frontal Ekman transport driven by down-front wind forcing effectively advects cold water over warm water. By this way, the weakened local stratification and strong lateral buoyancy gradients are conducive to a negative Ertel potential vorticity (PV) and triggering frontal symmetric instability (SI) at the submesoscale density front. The cross-front ageostrophic secondary circulation caused by frontal instabilities is found to drive an enhanced vertical velocity reaching O(100) m/d. Additionally, the estimate of the down-front wind forcing the Ekman buoyancy flux (EBF) is found to be scaled with the geostrophic shear production (GSP) and buoyancy flux (BFLUX), which are the two primary energy sources for submesoscale turbulence. The large values of GSP and BFLUX at the fronts suggest an efficient downscale energy transfer from larger-scale geostrophic flows to the submesoscale turbulence owing to down-front wind forcing and frontal instabilities. In this content, submesoscale fronts and their instabilities substantially enhance the local vertical exchanges and geostrophic energy cascade towards smaller-scale. These active submesoscale processes associated density fronts and filaments likely provide new physical interpretations for the filamentary high chlorophyll concentration and frontal downscale energy transfer in the WSCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.