Abstract

In this paper, a dynamical model of spinning multi-span pipes conveying fluid is proposed and the transverse natural and resonant frequencies and mode characteristics of such system are explored. The pipe body is considered to be composed of functionally graded materials (FGMs), in which a power law is used to govern the distribution of material properties along the pipe wall thickness. The partial differential equations (PDEs) governing two transverse motions of the pipe are derived by the extended Hamilton principle, in which the contributions of the FGM and intermediate supports are highlighted. The PDEs are discretized by the Galerkin procedure and the eigensystem theorem is applied to find the numerical solutions. The results show that various frequency characteristics can be attainable by use of different materials and mixing patterns. Attachments of intermediate supports can heighten the rigidity and improve the stability of spinning FG pipes conveying fluid, which are consequently used as “stabilizers” for the slender drill strings. Also, the mode characteristics of different spans will determine the locations of vibration amplitude of the pipes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.