Abstract

A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth–Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call