Abstract

In this paper, the dynamical cavitation behavior is analyzed for a sphere composed of a class of transversely isotropic incompressible hyper-elastic materials, where there is a pre-existing micro-void in the interior of the sphere. A second-order non-linear ordinary differential equation that governs the motion of the initial micro-void is obtained by using the boundary conditions. On analyzing the qualitative properties of the solutions of the differential equation, some interesting conclusions are proposed. It is proved that the number of equilibrium points of the differential equation depends on the values of the material parameters, and that the phase diagrams of the equation are closed, smooth and convex trajectories. For any prescribed surface tensile dead-loads, the motion of the initial micro-void undergoes a non-linear periodic oscillation. The dependence of the periodic motion of the initial micro-void on material parameters and the radius of the initial micro-void is examined, and numerical results are also provided. It is worth pointing out that the conclusions in this paper can be used to describe approximately the physical implications of the dynamical formation of a cavity in the sphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.