Abstract

This paper presents a new 3-D autonomous chaotic system, which is topologically non-equivalent to the original Lorenz and all Lorenz-like systems. Of particular interest is that the chaotic system can generate double-scroll chaotic attractors in a very wide parameter domain with only two stable equilibria. The existence of singularly degenerate heteroclinic cycles for a suitable choice of the parameters is investigated. Periodic solutions and chaotic attractors can be found when these cycles disappear. Finally, the complicated dynamics are studied by virtue of theoretical analysis, numerical simulation and Lyapunov exponents spectrum. The obtained results clearly show that the chaotic system deserves further detailed investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.