Abstract
The aim of this work is to study qualitative dynamical properties of a generalized hepatitis B epidemic model and its dynamically consistent discrete model. Positivity, boundedness, the basic reproduction number and asymptotic stability properties of the model are analyzed rigorously. By the Lyapunov stability theory and the Poincare–Bendixson theorem in combination with the Bendixson–Dulac criterion, we show that a disease-free equilibrium point is globally asymptotically stable if the basic reproduction number R0≤1 and a disease-endemic equilibrium point is globally asymptotically stable whenever R0>1. Next, we apply the Mickens’ methodology to propose a dynamically consistent nonstandard finite difference (NSFD) scheme for the continuous model. By rigorous mathematical analysis, it is proved that the constructed NSFD scheme preserves essential mathematical features of the continuous model for all finite step sizes. Finally, numerical experiments are conducted to illustrate the theoretical findings and to demonstrate advantages of the NSFD scheme over standard ones. The obtained results in this work not only improve but also generalize some existing recognized works.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.