Abstract

Abstract This paper considers a Hantavirus infection model consisting of a system of fractional-order ordinary differential equations with logistic growth. The fractional-order model describes the spread of Hantavirus infection in a system consisting of a population of susceptible and infected mice. The existence, uniqueness, non-negativity and boundedness of the solutions are established. In addition, the local and global asymptotic stability of the equilibrium points of the fractional order system and the basic reproduction number are studied. The impact of basic reproduction number and carrying capacity on the stability of the fractional order system are also theoretically and numerically investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call