Abstract

This article, a 3D fractional-order chaotic system (FOCS) is designed; system holds Equilibria can take on various shapes and forms by introducing a nonlinear function and the value of its parameters. To comprehend the system’s behavior under diverse conditions and parameter values, a dynamical analysis is conducted through analytical and numerical means. This analysis employs techniques like phase portraits, Lyapunov exponents (LEs), bifurcation analysis, and Lyapunov spectra. The system demonstrates attractors that are more intricate compared to a regular chaotic system with an integer value, specifically if we set the fractional order q to 0.97. This characteristic makes it highly appropriate for developing secure communication systems. Moreover, a practical implementation has been developed using an electronic circuit to showcase its feasibility of the system. A secure communication system was built using two levels of encryption techniques. The propose sound encryption algorithm is verified through tests like histogram, correlation, and spectrogram investigation. The encryption correlation coefficient between the original signal and the encrypted one is 0.0010, this result shows a strong defences against pirate attacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call