Abstract

Supply chains comprise various interconnected components like suppliers, manufacturers, distributors, retailers, and customers, each with unique variables and interactions. Managing dynamic supply chains is highly challenging, particularly when considering various sources of risk factors. This paper extensively explores dynamical analysis and multistability analysis to understand nonlinear behaviors and pinpoint potential risks within supply chains. Different phase portraits are used to demonstrate the impact of various factors such as transportation risk, quality risk, distortion, contingency reserves, and safety stock on both customers and retailers. We introduced a sliding mode control method that computes the sliding surface and its derivative by considering the error and its derivative. The equivalent control law based on the sliding surface and its derivative is derived and validated for control purposes. Our results show that the controller SMC can significantly enhance supply chain stability and efficiency. This research provides a robust framework for understanding complex supply chain dynamics and offers practical solutions to enhance supply chain resilience and flexibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.