Abstract
Abstract In automation and mechatronics applications, mass spring damper system (MSDS) plays a significant role in ensuring model serviceability and safety. The system’s dynamic of this mechanical system is quite challenging to control. In this paper, the system is a single degree of freedom (SDOF) spring mass system. The issue of performance evaluation of three controllers, linear proportional integral derivate (LPID), nonlinear PID (NPID), and fuzzy logic controller (FLC), is presented. FLC demands that experience be built on information based on a rule. It has two inputs, one of which is the displacement and the other is the velocity, and force is calculated for forced damped vibration control for a single degree of freedom system. The method used for defuzzification is the center of gravity (COG). However, effective control of a system depends largely on the accuracy of the mathematical model that predicts its dynamics behavior. The mathematical model for the MSDS is based on a set of nonlinear second-order ordinary differential equations to simulate the dynamic accurately. The proposed control schemes are implemented with the aid of MATLAB and SIMULINK to investigate the system performance. The sequence of the three controllers in terms of performance is as follows: the first of them is FLC and then in some dominant cases this is NPID by comparison with the LPID and one without any controller cases. Also, FLC displays more effectiveness and efficiency than the system without this controller after a comparative of system analysis performance evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Smart Sensing and Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.