Abstract

Electronically tintable windows increase the energy efficiency and comfort of buildings and automobiles. Recently, dynamic windows harnessing reversible metal electrodeposition have been explored as a viable alternative to electrochromic materials. In this manuscript, we first construct 25 cm2 dynamic windows with two tin-doped indium oxide (ITO) working electrodes, a metal frame counter electrode, and an aqueous-based electrolyte containing metal ions. This arrangement allows metal electrodeposition to occur simultaneously on both window panes and increases switching speed such that devices switch to ∼30% transmission in 10 s compared to analogous windows with one working electrode which take 30 s to reach the same transmission value. Windows with two working electrodes switch between clear (∼82% transmission at 600 nm) and black (∼8% transmission at 600 nm) states within 30 s, making them among the fastest metal-based dynamic windows reported on this scale. Second, we elicit selective metal electrodeposition on Pt nanoparticles that are attached to ITO substrates via a self-assembled monolayer (SAM). By patterning the SAM of Pt nanoparticles, metal electrodeposition can be spatially controlled on both the macroscale and microscale. Taken together, these results demonstrate the versatility of the reversible metal electrodeposition architecture for dynamic windows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.