Abstract
Social sensing is a new paradigm that inherits the main ideas of sensor networks and considers the users as new sensor types. For instance, by the time the users find out that an event has happened, they start to share the related posts and express their feelings through the social networks. Consequently, these networks are becoming a powerful news media in a wide range of topics. Existing event detection methods mostly focus on either the keyword burst or sentiment of posts, and ignore some natural aspects of social networks such as the dynamic rate of arriving posts. In this paper, we devised Dynamic Social Event Detection approach that exploits a new dynamic windowing method. Besides, we add a mechanism to combine the sentiment of posts with the keywords burst in the dynamic windows. The combination of sentiment analysis and the frequently used keywords enhances our approach to detect events with a different level of user engagement. To analyze the behavior of the devised approach, we use a wide range of metrics including histogram of window sizes, sentiment oscillations of posts, topic recall, keyword precision, and keyword recall on two benchmarked datasets. One of the significant outcomes of the devised method is the topic recall of 100% for FA Cup dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.