Abstract

An algorithm for the accurate calculation of luminescence lifetimes in near-real-time is described. The dynamic rapid lifetime determination (DRLD) method uses a window-summing technique and dynamically selects the appropriate window width for each lifetime decay such that a large range of lifetimes can be accurately calculated. The selection of window width is based on an optimal range of window-sum ratios. The algorithm was compared to alternative approaches for rapid lifetime determination as well as nonlinear least-squares (NLLS) fitting in both simulated and real experimental conditions. A palladium porphyrin was used as a model luminophore to quantitatively evaluate the algorithm in a dynamic situation, where oxygen concentration was modulated to induce a change in lifetime. Unlike other window-summing techniques, the new algorithm calculates lifetimes that are not significantly different than the slower, traditional NLLS. In addition, the computation time required to calculate the lifetime is 4 orders of magnitude less than NLLS and 2 orders less than other iterative methods. This advance will improve the accuracy of real-time measurements that must be made on samples that are expected to exhibit widely varying lifetimes, such as sensors and biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.