Abstract
ABSTRACTThe inertia of wind turbines causes a reduction in their output power due to their inability to operate at the turbine maximum co‐efficient of performance point under dynamic wind conditions. In this paper, this dynamic power reduction is studied analytically and using simulations, assuming that a steady‐state optimal torque control strategy is used.The concepts of the natural and actual turbine time‐constant are introduced, and typical values for these parameters are examined. It is shown that for the typical turbine co‐efficient of performance curve used, the average turbine speed can be assumed to be determined by the average wind speed. With this assumption, analytical expressions for the power reduction with infinite and then finite turbine inertia are determined for sine‐wave wind speed variations. The results are then generalized for arbitrary wind speed profiles.A numerical wind turbine system simulation model is used to validate the analytical results for step and sine‐wave wind speed variations. Finally, it is used with real wind speed data to compare with the analytical predictions. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Wind Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.