Abstract

Larch bark was liquefied in the presence of phenol and the obtained liquefied resultant was reacted with formaldehyde to prepare the liquefied bark-modified phenol formaldehyde resin (BPF) in an attempt to apply for preparing straw boards. The dynamic wettability of the BPF resin was evaluated on the surfaces of rice straw; either on the alkali solution treated or untreated rice straw surfaces. A new wetting model was employed to quantify the resins’ penetration performances using the spreading–penetration parameters (K value) as a constant to characterize penetration rate. The bigger the K value was, the stronger the penetration and spreading capacity was. Moreover, the curing kinetics of the BPF resin was also investigated with dynamic differential scanning calorimetry. The results showed that the K value of BPF resin was the highest, followed by those of BPF mixed with polymethylene diphenyl diisocyanate PMDI resin and conventional phenol formaldehyde (PF) resin, indicating that the BPF resin had the best wettability. The activation energy of BPF was close to that reported for wood/phenol/formaldehyde resins, but was higher than that of PF resin. The curing reaction was almost complete at 40 % conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call