Abstract

Detecting attacks in control systems is an important aspect of designing secure and resilient control systems. Recently, a dynamic watermarking approach was proposed for detecting malicious sensor attacks for SISO LTI systems with partial state observations and MIMO LTI systems with a full rank input matrix and full state observations; however, these previous approaches cannot be applied to general LTI systems that are MIMO and have partial state observations. This paper designs a dynamic watermarking approach for detecting malicious sensor attacks for general LTI systems, and we provide a new set of asymptotic and statistical tests. We prove these tests can detect attacks that follow a specified attack model (more general than replay attacks), and we also show that these tests simplify to existing tests when the system is SISO or has full rank input matrix and full state observations. The benefit of our approach is demonstrated with a simulation analysis of detecting sensor attacks in autonomous vehicles. Our approach can distinguish between sensor attacks and wind disturbance (through an internal model principle framework), whereas improperly designed tests cannot distinguish between sensor attacks and wind disturbance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call