Abstract

A dynamic void growth model in rate-sensitive plastic materials is derived. The constitutive relation of the matrix is in the overstress form proposed by Perzyna. When the rate of deformation sensitive parameter tends to zero, the Gurson model is retrieved. When the porous material element is under triaxial tension, the Carroll-Holt and Johnson models are retrieved. The normality condition of the plastic rate of deformation to the dynamic loading surface at constant equivalent rates of deformation (with the volumetric part also taken into account) is discussed, and it is shown that the normality rule no longer exists in general. Finally, an approximate expression of the dynamic loading surface that may be convenient for engineering applications is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call