Abstract

Abstract The viscoelasticity of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) during moisture desorption processes were examined at 30°C and two relative humidity (RH) modes: RHramp-down mode from 85 to 0% RH, and RHisohume mode at 0, 30, and 60% RH, respectively. Dynamic viscoelastic properties were determined in a multi-frequency range of 1, 2, 5, 10, and 20 Hz. In both RH modes, desorption of water resulted in increasing stiffness and decreasing damping. The reduction in moisture content caused an unstable state in the cell wall due to the formation of free volumes in cell wall and rearrangement of hydrogen bonds within the polymer networks. Higher ramping rates resulted in greater destabilization, and the unstable state was more pronounced at a lower frequency. The ratio of storage modulus at 1 and 20 Hz remained unchanged during both RH modes. The ratios of loss modulus and loss factor at 1 and 20 Hz increased during the RHramp-down and decreased during the RHisohume period. The changes of loss modulus or loss factor ratios at two frequencies were suitable for evaluation of the unstable state. The instability was aggravated with reducing RH and slightly recovered at constant RH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.