Abstract

Dynamic mechanical analysis of carbon black loaded solid and closed-cell microcellular ethylene-propylene-diene (EPDM) vulcanizates was studied at four frequencies of 3.5, 11, 35, and 110 Hz and temperatures from −100 to 150°C. A plot of the log of the storage modulus bears a linear relationship with the log of density for solid as well as closed-cell microcellular rubber. The slope of the line is found to be temperature-dependent. The relative storage modulus decreases with decrease in the relative density. It was also observed that the storage modulus and tan δ are both frequency- and temperature-dependent. The storage modulus results are superposed to form master curves of the modulus vs. Iog temperature-reduced frequency, using shift factors calculated by the Arrhenius equation. Strain-dependent isothermal dynamic mechanical analysis was carried out for DSA varying from 0.07 to 5%. The effect of blowing agent loading on the storage modulus (E′) and loss tangent (tan δ) were also studied. Cole-Cole plots of microcellular rubber shows a circular arc relationship with the density. Plots of tan δ against E′ were found to exhibit a linear relationship. © 1996 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call