Abstract

State-of-the-art video deblurring methods cannot handle blurry videos recorded in dynamic scenes since they are built under a strong assumption that the captured scenes are static. Contrary to the existing methods, we propose a new video deblurring algorithm that can deal with general blurs inherent in dynamic scenes. To handle general and locally varying blurs caused by various sources, such as moving objects, camera shake, depth variation, and defocus, we estimate pixel-wise varying non-uniform blur kernels. We infer bidirectional optical flows to handle motion blurs, and also estimate Gaussian blur maps to remove optical blur from defocus. Therefore, we propose a single energy model that jointly estimates optical flows, defocus blur maps and latent frames. We also provide a framework and efficient solvers to minimize the proposed energy model. By optimizing the energy model, we achieve significant improvements in removing general blurs, estimating optical flows, and extending depth-of-field in blurry frames. Moreover, in this work, to evaluate the performance of non-uniform deblurring methods objectively, we have constructed a new realistic dataset with ground truths. In addition, extensive experimental results on publicly available challenging videos demonstrate that the proposed method produces qualitatively superior performance than the state-of-the-art methods which often fail in either deblurring or optical flow estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.