Abstract
We experimentally demonstrate vibration phase reversal transition in a discrete time-translational symmetry broken cold atomic system by the application of a pulsed bias-field opposite to the existing phase of the symmetry broken vibrational state. The reversal transition depends on the strength hp and the duration Δt of the applied pulse. Consequently, we obtain a hp−Δt phase boundary with a divergent relaxation time τ due to the critical slowdown behavior. Interestingly, the dependence of the dynamic phase boundary and relaxation time on the noise-induced switching rate implies that the system is out of equilibrium, though not so in the Ising model of a spin system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.