Abstract

The cloud is an increasingly popular platform to deploy applications as it lets cloud users to provide resources to their applications as needed. Furthermore, cloud providers are now starting to offer a "pay-as-you-use" model in which users are only charged for the resources that are really used instead of paying for a statically sized instance. This new model allows cloud users to save money, and cloud providers to better utilize their hardware. However, applications running on top of runtime environments such as the Java Virtual Machine (JVM) cannot benefit from this new model because they cannot dynamically adapt the amount of used resources at runtime. In particular, if an application needs more memory than what was initially predicted at launch time, the JVM will not allow the application to grow its memory beyond the maximum value defined at launch time. In addition, the JVM will hold memory that is no longer being used by the application. This lack of dynamic vertical scalability completely prevents the benefits of the "pay-as-you-use" model, and forces users to over-provision resources, and to lose money on unused resources. We propose a new JVM heap sizing strategy that allows the JVM to dynamically scale its memory utilization according to the application's needs. First, we provide a configurable limit on how much the application can grow its memory. This limit is dynamic and can be changed at runtime, as opposed to the current static limit that can only be set at launch time. Second, we adapt current Garbage Collection policies that control how much the heap can grow and shrink to better fit what is currently being used by the application. The proposed solution is implemented in the OpenJDK 9 HotSpot JVM, the new release of OpenJDK. Changes were also introduced inside the Parallel Scavenge collector and the Garbage First collector (the new by-default collector in HotSpot). Evaluation experiments using real workloads and data show that, with negligible throughput and memory overhead, dynamic vertical memory scalability can be achieved. This allows users to save significant amounts of money by not paying for unused resources, and cloud providers to better utilize their physical machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.