Abstract

In this paper, we develop the first feasibly implementable scheme for end-to-end dynamic verification of multithreaded memory systems. For multithreaded (including multiprocessor) memory systems, end-to-end correctness is defined by its memory consistency model. One such consistency model is sequential consistency (SC), which specifies that all loads and stores appear to execute in a total order that respects program order for each thread. Our design, DVSC-Indirect, performs dynamic verification of SC (DVSC) by dynamically verifying a set of sub-invariants that, when taken together, have been proven equivalent to SC. We evaluate DVSC-Indirect with full-system simulation and commercial workloads. Our results for multiprocessor systems with both directory and snooping cache coherence show that DVSC-Indirect detects all injected errors that affect system correctness (i.e., SC). We show that it uses only a small amount more bandwidth (less than 25%) than an unprotected system and thus can achieve comparable performance when provided with only modest additional link bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.