Abstract

Abstract It is essential to analyze the dynamic characteristics of regional groundwater levels and their driving factors for the rational development of groundwater in irrigated areas. This article explores the spatial distribution characteristics of the amplitude of groundwater level change in the Shihezi irrigated area by using the ArcGIS interpolation method and contrast coefficient variance method and analyzes the influence factors of dynamic change of groundwater levels by integrating the grey relational degree and path analysis methods and obtaining the sensitivity of each influencing factor to changes in groundwater levels and the relative importance of the influencing factors. The following results are obtained: (1) the groundwater level of the Shihezi irrigated area showed an overall increasing trend from 2012 to 2019, with a fluctuation range of 12.26–14.14 m. The groundwater level in the southeast of the irrigated area showed an upward trend, while the groundwater level in the northwest area showed a downward trend. (2) The groundwater level in the irrigated area first increased, then decreased, and then increased again. The variance of the contrast coefficient in the irrigated area ranged from 0.04 to 11.31, and the fluctuation range of the groundwater level in the central area was higher than that in the northern and southern areas. (3) The irrigated area of cultivated land and evaporation are the main factors affecting groundwater level change in the Shihezi irrigated area. The grey relation analysis shows that the irrigated area of cultivated land has the highest grey correlation degree with the evolution of the groundwater level, which is 0.947, and the average grey correlation index is between 0.74 and 0.95. Path analysis showed that the irrigated area of cultivated land, surface water usage, and evaporation were the main factors affecting groundwater levels. Human activities are one of the main driving forces of groundwater level change, and the research results provide a theoretical basis for the rational utilization and sustainable development of groundwater resources in the Shihezi irrigation area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call