Abstract

Future wireless communication systems require higher performance requirements. Based on this, we study the combinatorial optimization problem of power allocation and dynamic user pairing in a downlink multicarrier non-orthogonal multiple-access (NOMA) system scenario, aiming at maximizing the user sum rate of the overall system. Due to the complex coupling of variables, it is difficult and time-consuming to obtain an optimal solution, making engineering impractical. To circumvent the difficulties and obtain a sub-optimal solution, we decompose this optimization problem into two sub-problems. First, a closed-form expression for the optimal power allocation scheme is obtained for a given subchannel allocation. Then, we provide the optimal user-pairing scheme using the actor–critic (AC) algorithm. As a promising approach to solving the exhaustive problem, deep-reinforcement learning (DRL) possesses higher learning ability and better self-adaptive capability than traditional optimization methods. Simulation results have demonstrated that our method has significant advantages over traditional methods and other deep-learning algorithms, and effectively improves the communication performance of NOMA transmission to some extent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.