Abstract

In this paper we present a continuous-time network loading procedure based on the Lighthill–Whitham–Richards model proposed by Lighthill and Whitham (1955) and Richards (1956). A system of differential algebraic equations (DAEs) is proposed for describing traffic flow propagation, travel delay and route choices. We employ a novel numerical apparatus to reformulate the scalar conservation law as a flow-based partial differential equation (PDE), which is then solved semi-analytically with the Lax–Hopf formula. This approach allows for an efficient computational scheme for large-scale networks. We embed this network loading procedure into the dynamic user equilibrium (DUE) model proposed by Friesz et al. (1993). The DUE model is solved as a differential variational inequality (DVI) using a fixed-point algorithm. Several numerical examples of DUE on networks of varying sizes are presented, including the Sioux Falls network with a significant number of paths and origin–destination pairs (OD).The DUE model presented in this article can be formulated as a variational inequality (VI) as reported in Friesz et al. (1993). We will present the Kuhn–Tucker (KT) conditions for that VI, which is a linear system for any given feasible solution, and use them to check whether a DUE solution has been attained. In order to solve for the KT multiplier we present a decomposition of the linear system that allows efficient computation of the dual variables. The numerical solutions of DUE obtained from fixed-point iterations will be tested against the KT conditions and validated as legitimate solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.