Abstract

Dynamic color-changing nanomaterials have been widely investigated for applications in fields like optical sensors, wearable activity monitors, smart electronic devices, and anticounterfeiting materials due to the excellent ability to change their optical properties with external variation. Here, a simple metal-insulator-metal (MIM) trilayer Fabry-Perot resonance cavity with a poly(N-isopropylacrylamide) (PNIPAm) brush layer as a responsive element is reported as a thermal-induced colorimetric response platform. The dynamic changes of conformation and physical properties of PNIPAm brush layer in response to external signals give rise to a significant color change of the MIM Fabry-Perot resonance cavity. This MIM Fabry-Perot resonance cavity shows the advantages of dynamic color change, rapid response, good repeatability, and simple construction. Additionally, the as-prepared MIM cavity shows great potential in various applications such as color printing, multicolor indicator, and information anticounterfeiting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.