Abstract

Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic evidence that human trophoblast stem cell-derived neural stem cells can potentially be used for neurobiological study, drug discovery, and as an alternative source of cell-based therapy in neurodegenerative diseases like Parkinson’s disease.

Highlights

  • Pluripotent stem cells such as human embryonic stem cells and induced pluripotent stem cells contain plasticity to generate NSCs, expressing signature features of neuroepithelia, neuronal morphology and functionality for disease modeling and therapeutic purposes with potential capacity for clinical management of Parkinson’s disease (PD) [1,2,3,4]

  • Both RXRα mRNA and RARβ mRNA expressions were inhibited by the transcription inhibitor actinomycin D (ACD), but not the translation inhibitor cycloheximide (CHX) (Fig 2G)

  • These results suggested that retinoic acid (RA) induced local translation of RARβ and RXRα via activation of the TrkA/PI3K/Akt3/mammalian target of rapamycin (mTOR) signaling, representing a novel non-genomic RA effect

Read more

Summary

Introduction

Pluripotent stem cells such as human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells contain plasticity to generate NSCs, expressing signature features of neuroepithelia, neuronal morphology and functionality for disease modeling and therapeutic purposes with potential capacity for clinical management of Parkinson’s disease (PD) [1,2,3,4]. We have previously reported that all-trans retinoic acid (RA) is capable of differentiation of human trophoblast stem (hTS) cells to DA committed progenitor cells [5]. Intracranial implantation of such NSCs into the 6-OHDA-induced and -lesioned substantia nigra pars compacta successfully regenerates dopaminergic (DA) neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the PD rat model. It has been shown that extrinsic signal RA and intrinsic transcription factors Neurogenin (Ngn2) collaboratively trigger transcriptionally active chromatin in spinal motor neuron genes that determine specific cell fate during development [8], suggesting that the neural progenitors can integrate both cues and orchestrate chromatin changes for neuronal specification. Neurotrophic factors protect DA neurons and enhance their regeneration in PD [12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call