Abstract
AbstractWhile dynamic earthquake triggering has been reported in several continental settings, offshore observations are rare. Oceanic transform faults share properties with continental geothermal areas known for dynamic triggering: high geothermal gradients, high seismicity rates, and frequent swarms. We study dynamic triggering along the East Pacific Rise by analyzing 1 year of seismicity recorded by Ocean Bottom Seismographs. By comparing the response to teleseismic waves from global earthquakes, we find triggering to be most sensitive to changes in normal stress and to preferentially occur above 0.25 kPa. The clearest example of triggering occurs on the Quebrada and Gofar faults after the Mw8.0 Wenchuan earthquake. On Gofar, triggered seismicity occurs between the rupture areas of large earthquakes, within a zone characterized by aseismic slip, abundant microseismicity, frequent swarms, and low Vp. We infer that lithological properties inhibiting rupture propagation, such as high porosity and fluid content, also favor dynamic triggering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.