Abstract
We present a method for estimating the empirical dynamic treatment effect (DTE) curves from tumor growth delay (TGD) studies. This improves on current common methods of TGD analysis, such as T/C ratio and doubling times, by providing a more detailed treatment effect and overcomes their lack of reproducibility. The methodology doesn't presuppose any prior form for the treatment effect dynamics and is shown to give consistent estimates with missing data. The method is illustrated by application to real data from TGD studies involving three types of therapy. Firstly, we demonstrate that radiotherapy induces a sharp peak in inhibition in a FaDu model. The height, duration and timing of the peak increase linearly with radiation dose. Second, we demonstrate that a combination of temozolomide and an experimental therapy in a glioma PDX model yields an effect, similar to an additive version of the DTE curves for the mono-therapies, except that there is a 30 day delay in peak inhibition. In the third study, we consider the DTE of anti-angiogenic therapy in glioma. We show that resulting DTE curves are flat. We discuss how features of the DTE curves should be interpreted and potentially used to improve therapy.
Highlights
A tumor growth delay (TGD) experiment is often the last step in preclinical cancer drug development
The time dependence of these single number summaries highlights the need for a time varying estimate of the treatment effect
We have demonstrated that the treatment effect for some common types of cancer therapy show a strong non-linear time dependence, which we can estimate via the methodology proposed in this paper
Summary
A tumor growth delay (TGD) experiment is often the last step in preclinical cancer drug development. When a therapy that has shown efficacy in in vitro studies fails to repeat effects in a TGD study, we would like to know why. Common methods for reporting results from TGD studies do not provide any information regarding mechanisms failure, because they merely provide an overall measure of efficacy of a therapy. Typical results do not provide any information as to what methods could be modified to improve efficacy. We describe a new analysis method for TGD studies that can be used as an investigative tool, rather than just for screening
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.