Abstract

The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow, by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors. In particular, it is shown that as the Taylor number crosses the critical number, the system undergoes either a continuous or a jump dynamic transition, dictated by the sign of a computable, nondimensional parameter R. In addition, it is also shown that the new transition states have the Taylor vortex type of flow structure, which is structurally stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.