Abstract
We give a generic divide-and-conquer approach for constructing collusion-resistant probabilistic dynamic traitor tracing schemes with larger alphabets from schemes with smaller alphabets. This construction offers a linear tradeoff between the alphabet size and the codelength. In particular, we show that applying our results to the binary dynamic Tardos scheme of Laarhoven et al. leads to schemes that are shorter by a factor equal to half the alphabet size. Asymptotically, these codelengths correspond, up to a constant factor, to the fingerprinting capacity for static probabilistic schemes. This gives a hierarchy of probabilistic dynamic traitor tracing schemes, and bridges the gap between the low bandwidth, high codelength scheme of Laarhoven et al. and the high bandwidth, low codelength scheme of Fiat and Tassa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.