Abstract
Accurate machine learning predictions of passenger flow data for mass rapid transit (MRT) systems can considerably improve operational efficiency by enabling better allocation of train and human resources. However, such predictions are challenging because MRT networks have complex structures with route dependence and transfer stations. Although the static state of an MRT network has been computed in previous studies, a comprehensive understanding of an MRT network requires characterizing its dynamics. Therefore, this paper proposes a dynamic traffic network representation (DTNR) model that captures station features from historical traffic flows and geographical information of MRT stations. Furthermore, a multilevel attention network (MLAN) model is proposed to predict MRT passenger flow as a downstream task following the pretraining of the DTNR model. The experimental results of this study indicate that the developed DTNR and MLAN models can accurately predict MRT passenger flow. These models are widely applicable to different MRT systems and passenger flow situations, making them a valuable tool for transportation planners and operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.