Abstract

Being able to visualize blood vessels with an inner diameter of less than 150 μm is the present limit of modern medical imaging modalities and it becomes an important issue to advance state-of-the-art medical imaging, diagnostics, surgery, and targeted interventions. In cancer therapy, such capability would provide the information required for new delivery methods such as magnetic resonance navigation to navigate therapeutic agents along a planned trajectory deeper in the vasculature and hence closer to the region to be treated for enhancing the therapeutic index. To demonstrate the possibility of gathering images of microvascular networks dynamically and beyond the limitation of medical imaging modalities, the susceptibility artifact was used as the contrast mechanism in magnetic resonance imaging (MRI) to detect magnetic micro-aggregations of iron-oxide nanoparticles (150 ± 20 μm in diameter) as they were injected in a 2D synthetic microvascular network. Magnetic entities cause susceptibility artifacts in the images by disrupting the MRI's homogeneous magnetic field in a much larger scale than their actual size. The position of the artifact reflects the position of the aggregations in the vascular system. The calculated positions of discrete-time scans were extracted and assembled to build up the distribution of the vascular network. The results suggest that this method could be used to gather images of blood vessels beyond the spatial resolution of clinical medical imaging modalities with a measured average error confirmed on a 2D reconstruction of the micro-vessels of approximately half of a pixel's size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.