Abstract

Dynamic torsional deformation behavior of an ultra-fine-grained dual-phase steel fabricated by equal channel angular pressing (ECAP) was investigated and compared with that of an equal channel angular pressed (ECAPed) ultra-fine-grained low-carbon steel. Tensile and dynamic torsional tests were conducted on these two steels, and the deformed microstructures were observed to investigate the dynamic deformation behavior. The ECAPed low-carbon steel consisted of very fine, elongated ferrite-pearlite grains of 0.5 μm in size, and the ECAPed dual-phase steel consisted of ferrite-martensite grains of 1 μm in size. The dynamic torsional test results indicated that maximum shear stress of the dual-phase steel was lower than that of the conventional steel, but that fracture shear strain was higher in the dual-phase steel. Some adiabatic shear bands were observed at the gage center of the dynamically deformed torsional specimen of the low-carbon steel, but they were not observed in the dual-phase steel because localized deformation was alleviated by the increased strain hardenability. These results suggested that the ECAPed ultra-fine-grained dual-phase steel could be a good way to increase the fracture resistance under dynamic loading as the formation of adiabatic shear bands was reduced or prevented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call