Abstract

By considering the effect of stress waves in a Hamiltonian system, this paper treats dynamic buckling of an elastic cylindrical shell which is subjected to an impact torsional load. A symplectic analytical approach is employed to convert the fundamental equations to the Hamiltonian canonical equations in dual variables. In a symplectic space, the critical torsion and buckling mode are reduced to solving the symplectic eigenvalue and eigensolution, respectively. The primary influence factors, such as the impact time, boundary conditions and thickness, are discussed in detail through some numerical examples. It is found that boundary conditions have limited influence except free boundary condition in the context of the scope in this paper. The localization of dynamic buckling patterns can be observed at the free end of the shell. The new analytical and numerical results serve as guidelines for safer designs of shell structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call