Abstract

Deep mantle plumes imaged by seismic tomography have much larger radii (∼400 km) than predicted by conventional geodynamic models (∼100 km). Plume buoyancy fluxes estimated from surface topography concur with narrow plumes with low viscosities expected from their high temperatures. If plumes are thick as imaged by tomography, buoyancy flux estimates may require very viscous or thermochemical plumes. Here we assess the dynamical plausibility of an alternative model, a ponding plume, which has been suggested to explain thick plumes as well as buoyancy fluxes estimated from surface topography. In the ponding plume model, a thick conduit in the lower mantle narrows significantly after passing through the mantle transition zone, below which excess material from the thick lower-mantle plume, which cannot be accommodated by the narrow upper-mantle plume, spreads laterally. Such excess material in the mid-mantle, however, should still manifest itself in surface topography, the amplitude of which can be quantified via topography kernels. We find that the ponding of a purely thermal plume would lead to unrealistic excess topography, with the scale of ponding material large enough to be detected by seismic tomography. If mantle plumes are as thick as indicated by seismic tomography, it appears to be necessary to deviate from either conventional temperature-dependent viscosity or the assumption of purely thermal origins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call