Abstract

Self-organizing maps provide a useful framework for exploring the mechanisms of experience-dependent changes in auditory representations, including those induced by learning. Such models do a good job of explaining many of the changes in tonotopic structure and neural sensitivities produced by classical and operant conditioning involving pure tones [1], but are not able to account for several effects seen after cortical microstimulation, or after basal forebrain stimulation is repeatedly paired with presentations of sounds containing multiple frequencies. In particular, electrical stimulation of rat auditory cortex produces more changes in the responses properties of adjacent sites than they do at the site of stimulation [2], and these receptive field changes are not consistent with a process that makes the neighboring neurons more similar to the most strongly activated neurons. We developed a simple mapping network with a center-surround neighborhood function, and a cumulating training function, to assess whether such non-Hebbian learning could account for the kinds changes in cortical response properties seen after neurostimulation. The model exhibits many of the properties of self-organizing maps, but with more dynamic interactions between adjacent nodes that may better account for the variability in auditory cortical plasticity observed experimentally. Ongoing simulations with this model are providing new insights into how complex perceptual experiences restructure existing cortical representations.

Highlights

  • Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf

  • Self-organizing maps provide a useful framework for exploring the mechanisms of experience-dependent changes in auditory representations, including those induced by learning

  • We developed a simple mapping network with a "center-surround" neighborhood function, and a cumulating training function, to assess whether such non-Hebbian learning could account for the kinds changes in cortical response properties seen after neurostimulation

Read more

Summary

Introduction

Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 William R Holmes Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here http://www.biomedcentral.com/content/pdf/1471-2202-8-S2-info.pdf . Address: Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call