Abstract

With recent growth in fields such as life sciences and supramolecular chemistry, there has been an ever increasing need for high-throughput methods that would permit determination of binding affinities for noncovalent complexes of various host-guest systems. These are traditionally measured by titration experiments where concentration-dependent signals of species participating in solution-based binding equilibria are monitored by methods such as UV-vis spectrophotometry, calorimetry, or nuclear magnetic resonance spectrometry. Here we present a new titration technique that unifies and allows chromatographic separation of guests with determination of dissociation constants by electrospray mass spectrometry in a multiplexed format. A theoretical model has been derived that describes the complex formation for the guests eluted from a chromatographic column when hosts are admixed postcolumn. The model takes possible competition equilibria into account; i.e., it can deal with unresolved peaks of guests with the possible addition of multiple hosts in one experiment. This on-line workflow makes determination of binding affinities for large libraries of compounds possible. The potential of the method is demonstrated on the determination of dissociation constants for complexes of beta- and gamma-cyclodextrins with nonsteroidal antiinflammatory drugs ibuprofen, naproxen, and flurbiprofen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call