Abstract

Given a directed graph G = (V, E), a feedback vertex set is a vertex subset C whose removal makes the graph G acyclic. The feedback vertex set problem is to find the subset C* whose cardinality is the minimum. As a general model, this problem has a variety of applications. However, the problem is known to be NP-hard, and thus computationally challenging. To solve this difficult problem, this article develops an iterated dynamic thresholding search algorithm, which features a combination of local optimization, dynamic thresholding search, and perturbation. Computational experiments on 101 benchmark graphs from various sources demonstrate the advantage of the algorithm compared with the state-of-the-art algorithms, by reporting record-breaking best solutions for 24 graphs, equally best results for 75 graphs, and worse best results for only two graphs. We also study how the key components of the algorithm affect its performance of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.