Abstract
Empirical, three-dimensional electron-density maps of the solar corona can be tomographically reconstructed using polarized-brightness images measured from ground- and space-based observatories. Current methods for computing these reconstructions require the assumption that the structure of the corona is unchanging with time. We present the first global reconstructions that do away with this static assumption and, as a result, allow for a more accurate empirical determination of the dynamic solar corona. We compare the new dynamic reconstructions of the coronal density during February 2008 to a sequence of static reconstructions. We find that the new dynamic reconstructions are less prone to certain computational artifacts that may plague the static reconstructions. In addition, these benefits come without a significant increase in computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.